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We consider statements of inverse problems of radiative and coupled heat and 
mass transfer in dispersed media. We review some of the recent papers and 
discuss the algorithm of the method of inverse dynamical systems. 

The equation governing radiative transfer in a scattering medium in the unsteady case 
is of the integrodifferential type and has the form [i] 
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subject to the initial conditions and boundary conditions 

and certain additional conditions 
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t = t o l~, ~ l~,l, ( 3 )  

l~j = ~p:, j -~, 1, 2 . . . . .  ;V. (4 ) .  

As is well known, (i) is analogous to the multiple-rate kinetic equation in neutron trans- 
port [ i] 
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and the conditions (2)-(4) are possible for the flux r although other boundary conditions 
and additional conditions are also possible. For many steady and unsteady problems, state- 
ments of the problem without initial conditions are possible. For the solution of inverse 
problems various information (usually obtained from the experimental data) can be used as 
the additional conditions (4). 

In 1964 Marchuk [2, 3] formulated a series of inverse problems of radiative transfer 
in the atmosphere for the coefficients ~v and By of (i) in the case where the additional 
condition is a certain functional of the solution of the direct problem, in particular a 
characteristic of the instrument, measuring the intensity of the radiation [4]: 

Jp (l~) = ~f I~.~.6 ( r - -  r,,) d r d Q .  ( 6 )  

Perturbation theory is used to obtain ~ and ~v and the scattering indicatrix in the steady- 
state case when (i)is replaced on an integral transfer equation. Inverse problems for the 
neutron transport equation (5) were considered in [5-9]. There are several anaytical and 
numerical methods of solving direct problems for transfer equations of the form (i) and (5): 
the method of spherical harmonics, the method of lyon [i], the Monte-Carlo approach [4], and 
difference [5], cubature [i0], variational, and other methods. 

For example, replacing the integrals by quadrature formulas of order N in the one-dimen- 
sional, steady-state case, the integral transfer equation can be rewritten in the form [i0]: 
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where Ivi j = Iv(~i, ~j, ~). The solution of the direct problem reduces to the solution of 
a system of ordinary differential equations. 

In atmospheric optics [ii, 12], astrophysics [i0], and reactor theory [5] problems 
arise where conditions of the form (4) are specified, i.e., values of the function Ivij(~) 
are specified at several point s j = i, 2, ..., N and it is required to determine, for exam- 
ple, the albedo ~, approximated by the form [i0]: 

(~) = a + b th [ 10 (~ - -  c)], 

where a, b, c are unknown constants which are determined from the known N 2 values of Ivi j = 
Ivij(T j) from a least squares fit 

vU 

The a d d i t i o n a l  i n f o r m a t i o n  (4 )  can  be  s p e c i f i e d  in  t h e  fo rm o f  g i v e n  s e m i - e m p i r i c a l  f o r m u -  
l a s  r e l a t i n g  t h e  s o l u t i o n  o f  t h e  d i r e c t  p r o b l e m  w i t h  t h e  r e q u i r e d  f u n c t i o n .  

In  t h e  u n s t e a d y  c a s e  t h e  a d d i t i o n a l  i n f o r m a t i o n  (4)  can  be g i v e n  by t h e  e x p e r i m e n t a l l y  
measu red  v a l u e s  o f  t h e  i n t e n s i t y  a t  d i f f e r e n t  t i m e s ,  and t h e  s o l u t i o n  i s  s o u g h t  in  t h e  fo rm 
o f  a l e a s t - s q u a r e s  f i t  o f  t h e  m e a s u r e d  and c a l c u l a t e d  i n t e n s i t i e s ,  as  i s  done in  i n v e r s e  
p r o b l e m s  o f  u n s t e a d y  h e a t  c o n d u c t i o n  [ 1 - 4 ] .  I t  i s  t h e n  p o s s i b l e  t o  d e t e r m i n e  t h e  c o e f f i -  
c i e n t s  ~v,  By, the bulk S or surface sources ~i in (i) or (2) either separately or together 
[ 1 0 ] .  

I n  d i r e c t  p r o b l e m s  t h e  c o e f f i c i e n t s  ~v,  ~v, o,  t h e  s c a t t e r i n g  i n d i c a : t r i x  p ,  and t h e  
s o u r c e s  S and F a r e  assumed t o  be  g i v e n .  A d i r e c t  p r o b l e m  c o n s i s t s  o f  t h e  d e t e r m i n a t i o n  o f  
I v f o r  d i f f e r e n t  bounda ry  c o n d i t i o n s  o f  t h e  Marshak ,  Mark, d i f f u s e ,  o r  s p e c u l a r  t y p e s .  The 
v a r i o u s  c o e f f i c i e n t s  o f  t h e  e q u a t i o n  a r e  c a l c u l a t e d  in  t h e  t h e o r y  o f  r a d i a t i v e  t r a n s f e r  on 
t h e  b a s i s  o f  M a x w e l l ' s  e q u a t i o n s  and in  t h e  t r a n s p o r t  o f  n e u t r o n s  ( o r  o t h e r  e l e m e n t a r y  p a r t i -  
c l e s )  f rom t h e  S c h r o d i n g e r  e q u a t i o n .  C a l c u l a t i o n s  o f  t h i s  k i n d  f o r  m o n o d i s p e r s e d  and p o l y -  
dispersed spherical particles with different distribution functions were studied by us in 
[i, 13-27] and it was shown that the hyperbolic transfer equations for radiation or matter 
earlier postulated phenomenologically by Lykov et el., are obtained rigorously from the 
kinetic transport equations for radiation and matter. 

Along with the direct problems there has been even more interest in the study of inverse 
problems for the distribution functions of scattering droplets, particles, bubbles, or other 
inhomogeneities in terms of the degree of polarization, radiation scattering indicatrix, 
and other characteristics of the medium. In the simplest case the problem reduces to solving 
a Fredholm integral equation of the first kind 

?2 

j" K (S, r) / (r) dr : / (s). (8 )  
r l  

The problem was solved n u m e r i c a l l y  us ing  the method of  s t a t i s t i c a l  t r i a l s .  The d i s -  
t r i b u t i o n  f u n c t i o n  determined from the s o l u t i o n  of  the i l l - p o s e d  problem can be used to f i n d  
the m i c r o s t r u c t u r e  of  mu l t iphase  f l u x e s  in  f lows of  g a s - d r o p l e t s ,  l i q u i d - b u b b l e s ,  p o l y d i s -  
persed media w i t h  s o l i d  p a r t i c l e s ,  i c e - c r y s t a l s ,  or  aeroso ls  [13 ] ,  combust ib le  plumes o f  
l i q u i d - f u e l e d ,  l o w - t h r u s t  rocket  engines [23 -26 ] ,  i n  l a rge -amp l i t ude  waves i n  engines,  and 
in the study of ocean currents [19]. 

Because of the great diversity of boundary conditions, media, surface or bulk sources 
(sinks) of radiation, and additional conditions, it is possible to formulate many inverse 
transfer problems of radiation, neutrons, and other substances. 

Hence the statement of inverse problems is much wider than that of direct problems 
because of the great diversity of the additional conditions, the nonuniqueness in the state- 
ment of the equations themselves, as well as the initial and boundary conditions. In addi- 
tion, it is often necessary to solve both the direct and the inverse problem, since in many 
cases the inverse problem is ill-posed mathematically and the correctness of the solution 
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of the inverse problem is tested by solving the direct problem and comparing the solutions 
of the inverse and direct problems with the experimental data (4) [28-33]. 

Solution of the equations of coupled heat and mass transport, based on nonequilibrium 
thermodynamics [34] 

Oc OT 
div Jm + I~, oc v ~ = - -  div jq @. Q, 

Ot ' Ot ( 9 ) 

aj., 
j ~  = - -  DVc -- Dr vT -- %~ ---~, ]q ---= -- ~,eV c -- $,vT -- "Cpq Ojq ( i0 ) 

Ot 

subject to the initial conditions 

t==O, c = c  o , T = - T  o, J ~ =  J~o, Jq==J~o 

and generalized differential or integral boundary conditions [34]: 
t t 

t~ ~pm :, ~P" (ii) 

Jq:: J@e-t/XPq i: )'~ vce-'<x-~ 3 ~ k -- . - -  vTe-{~-t),.',pqd~ 
t~ Tpq to Tpq 

i s  t h e  g o a l  o f  t h e  d i r e c t  p r o b l e m .  To s o l v e  t h e  c o r r e s p o n d i n g  i n v e r s e  p r o b l e m ,  a d d i t i o n a l  
i n f o r m a t i o n  must  be  s p e c i f i e d  on t h e  e q u a t i o n s  t h e m s e l v e s ,  t h e  bounda ry  or  i n i t i a l  c o n d i -  
t i o n s ,  t h e  t e m p e r a t u r e s ,  c o n c e n t r a t i o n s ,  and bounda ry  @ or  b u l k  Im, Q s o u r c e s  o f  h e a t  and 
mass ,  and on t h e  t r a n s p o r t  c o e f f i c i e n t s  pCp, D, D T, kc ,  k, Xpm, X P q ' t s  N ~  m e a s u r e d  v a l -  
ue s  o f  t h e  f u n c t i o n s  T and c a t  m p o i n t s  i n s i d e  t h e  m a t e r i a l - o r  on s u r f a c e  a r e  s p e c i -  
f i e d  as  f u n c t i o n s  of  t i m e :  

T,,, =: O= (t), c. ,  = c=  (t). ( 1 2 )  

This is the standard statement of the additional conditions. Other statements of the con- 
ditions are possible and it is also possible that incomplete or random additional informa- 
tion will be specified. The thermal characteristics were approximated in [28-33] by power 
series expansions : 

N 

pcp (T, c)= ~ aihTic ~, 
i ,k=O 

R 
Dr = ~ bpqTPc q, 

p,q=O 

M k 

k = ~ kjtTid, D ---:: ~ dm,~Tmc ", 
f ,l rn,n~O 

P 

)'c--= Y~ I,~ T~c~ etc., 
r,$=O 

(13) 

and the solution of the inverse problem is usually carried out using linear or cubic splines 
with the additional requirement that the error functional be minimized: 

N h 

m=O rn=O 

The functional was minimized using the method of conjugate gradients. Inverse prob- 
lems are usually ill-posed mathematically, and therefore it is necessary to regularize 
them. Various methods of regularization for ill-posed problems have been discussed by 
Tikhonov [35-40]. The question of the correctness of inverse problems, i.e., proofs of 
the existence, uniqueness, and stability of the solution to small changes in the parameters 
of the problems, has been studied by Prilepko [6-9], Yu. E. Anikonov [41], D. S. Anikonov 
[42], and others. 

Inverse problems based on the methods of the theory of radiative transfer have found 
wide application in the laser probing of the atmosphere [43], in plasma diaBnostics [44, 
45], in medicine [46], in the processing of photographic images [47], and in ultrasonic, 
laser, or x-ray tomography [48]. Finally, we consider the method of inverse dynamical sys- 
tems in transfer theory. 

In abstract form, the inverse problem of determining a source function can be written 
in terms of the operator equation 
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subject to the initial condition 

09 
= L w +  Bu(t)  (15) 

Ot 

boundary conditions 
w (0) :~ ~o ,  

(16) 

and additional conditions 

t ~  - o ( 1 7 )  

y(t) := R(~,), (18) 

which determine the source function u(t). 

Eliminating the function u from (15) and (18), we obtain the inverse dynamical system 

- [ L - -  B ( R B )  - 1 R L I w  + B (RB)- '  - - ,  (19)  
Oi Ot 

u -.-= - -  ( R B ) . 1 R L w  - -  (RB)- '  dr] (20)  
dt ' 

(0) .... Wo, (21) 

l (w)-= O. (22) 

Hence solution of the inverse problem reduces to the solution of the system (19)-(22) 
without having to solve the direct problem. The system (19)-(22) can be used to analyze 
qualitatively the dynamical system, to specify the minimum amount of information on the 
initial and external factors which is necessary and sufficient to obtain the input signals, 
to separate the well-posed and ill-posed (in the sense of Adamara) parts of the problem, to 
study the stability of the dynamical system, to establish invertibility and observability 
criteria, etc. In problems of inversion of dynamical systems the required quantities are 
the inputs and the measured results are the outputs. This method has been used to solve 
several inverse problems in transfer theory. In [49] the problem of choosing a control 
function u(t) such that the output of the system y(t) matches a specified function was con- 
sidered. The problem of determining boundary and bulk heat sources was solved in [50]. 
In [51] the inversion problem was represented in abstract form and explicit conditions for 
invertibility and inversion algorithms were obtained. In [52, 53] inversion problems were 
studied in the case when the initial states of the system are unknown. Recently several 
problems of determining internal sources of heat, neutrons, and radiation were solved in 
[54-56] and other papers. Other statements of inverse problems in transfer theory and in 
electrodynamics and methods of solution are discussed in [57]. 

NOTATION 

Iv, spectral radiation intensity; ~v, ~v, coefficients of absorption and scattering of 
radiation; ~v/av, albedo for single scattering of radiation; p, scattering indicatrix; S, 
radiative source function; $, spread function; f(r), distribution function; K, kernel of the 
integral equation; I~ij, experimentally measured quantities; y and 6, functions determining 
the reliability of the additional information; L, operator of the equation; R, operator of 
the additional conditions; B, source operator; s operator of the boundary conditions. 
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NUMERICAL SOLUTION FOR THE STEADY-STATE COEFFICIENTS 

OF THE INVERSE HEAT-TRANSFER PROBLEM FOR STRATIFIED MEDIA 

P. N. Vabishchevich and A. Yu. Denisenko UDC 536.24:5].7.958 

Problems of the uniqueness of the inverse heat transfer problem for stratified 
media are considered and algorithms for computing approximate solutions are 
discussed. 

The coefficients of the inverse problem are of great practical importance in the theory 
of heat transfer [i, 2]. At present attention is being turned to the problem of determining 
the thermophysical properties (the coefficients of heat capacity and thermal conductivity), 
which depend on the temperature. A second important class covers inverse heat transfer 
problems for stratified media and composite materials. The problem of establishing the tem- 
perature dependence of the coefficient of thermal conductivity of a coposite material from 
temperature measurements within the field has been considered in [3, 4]. In the case of 
small temperature gradients (small layer thicknesses, large number of layers) it is valid 
to assume that the thermophysical properties depend on one variable. A steady-state inverse 
heat transfer problem for a stratified medium is considered in the present paper. 
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